Affiliation:
1. 1Sid Richardson Carbon Company, Fort Worth Research Center, 4825 North Freeway, Fort Worth, TX 76106
2. 2Institut Supérieur des Matériaux du Mans, 44, Avenue F A Bartholdi, 72000 Le Mans, France
Abstract
Abstract
A high frequency viscoelasticity spectrometer, using the state-of-the-art ultrasonic technology, was constructed. The longitudinal and shear waves characteristics were measured in rubber compounds to obtain the attenuation coefficient, α, and sound velocity, v Preliminary results were obtained for a number of filled and unfilled polymers. The grade of carbon black used, filler loading, crosslinking density and filler dispersion were varied during the study. Temperature sweepS from −100°C to +60°C were also studied. It was found that the polymer type had a greater influence on α and v than did the grade of carbon black, loading or dispersion. The experimental data show that shear waves do not propagate in the rubbery state. Above the glass transition temperature, Tg, the longitudinal wave measurements could be sufficient to determine the high frequency dynamic properties of filled and unfilled polymers to characterize a tire tread compound. The temperature sweep measurements allowed the determination of the Tg of polymers at high frequency. It is proposed that the described method of measuring α and v be used as a laboratory tool for potential tire traction prediction.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献