Hydrogenation of Diene Elastomers, Their Properties and Applications: A Critical Review

Author:

Singha N. K.1,Bhattacharjee S.1,Sivaram S.1

Affiliation:

1. 1Division of Polymer Chemistry, National Chemical Laboratory, Pune 411 008, India

Abstract

Abstract This chemistry and technology of hydrogenation of diene elastomers have substantially grown during the past decade. New applications of hydrogenated elastomers have emerged. Homogeneous hydrogenation has several advantages over heterogeneous hydrogenation because of its higher selectivity, faster rate and cleaner end products. However, separation of catalysts and recycle/reuse of expensive metals still poses problems. The preferred alternative for the hydrogenation of elastomers in solution is the use of Zeigler type catalyst which are less expensive than the noble metal catalysts like Rh, Pd etc. However, such catalysts are not effective when strongly coordinating groups are present in the elastomer. One approach would be to use transition metals, which have less tendency to coordinate with polar monomers in the elastomer. Research is also warranted in the use of less expensive metals for elastomer hydrogenation (Ni, Co, Ru). Use of large quantities of solvent (to keep the solution viscosity low) is another significant cost center in elastomer hydrogenation. Novel agitator systems/reactor configuration to handle higher concentration of rubber in solution, yet provide adequate heat and mass transfer in gas-liquid hydrogenation reaction, needs to be explored. Hydrogenation of diene elastomers in the latex form using water soluble catalyst appear to be hold great promise at the present time since many diene elastomers (like SBR, CR and NBR etc.) are commercially produced directly in the form of latex. Creative exploitation of biphasic catalysts for hydrogenation is expected to gain momentum since early results look promising. This would require greater fundamental understanding of the aqueous-organic interphase in a latex process and the mechanism of transport of catalytic reagent across this interphase. More studies are needed to achieve homogeneous chemical reaction inside of each individual latex particles.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3