Reinforcement of Silicone Rubber by Particulate Silica

Author:

Boonstra B. B.1,Cochrane H.1,Dánnenberg E. M.1

Affiliation:

1. 1Cabot Corporation, Concord Road, Billerica, Massachusetts 01821

Abstract

Abstract The interaction between fumed silica and silicone elastomer after various treatments of the silica surface has been investigated. The effect of the treatments was determined by measuring bound rubber, an interaction coefficient by means of the oscillating disk rheometer, the mechanical properties of the vulcanizates, the morphology of the silica aggregates, and the use of an hydroxyl-terminated silicone rubber. The results indicated that the interaction is much more intensive than in carbon black-hydrocarbon rubber systems. This is demonstrated by much higher bound rubber values (by a factor of 2–3) and a higher interaction coefficient. It is shown that the major effect on this interaction coefficient is the specific interaction by hydrogen bonding, between silica surface silanol groups and the polydimethylsiloxane chain. In this bonding the isolated hydroxyl groups should play the major part. Partial inactivation of these isolated silanol groups leads to improved strength but lower modulus. Maximum inactivation of the surface hydroxyl groups leads to soft compounds with lower tensile strengths and moduli, as well as very low bound rubber. Replacement of surface hydroxyl groups by vinyldimethylsilyl groups did not have the expected activating effect. Apparently the attached vinyldimethylsilyl groups do not form crosslinks with the elastomer chains, so that the overall result of the presence of these groups on the silica surface is a weakening of the interaction with the silicone rubber chains, although to a lesser degree than in the case of trimethylsilyl groups. The interaction between filler surface and polysiloxane can be maximizedby the use of a hydroxyl-terminated elastomer. The terminal groups will react with the silica surface so strongly that the particles act as crosslinks after proper heat treatment and a crosslinked polymer is obtained with a tensile strength of the same level as a peroxide-crosslinked vulcanizate but with higher compression set. At the temperature of the compression set test (175°C) the bonds apparently rearrange so that the permanent deformation is practically 100%. Quantitative data have been presented which prove that breakdown of silica aggregates does occur during mixing in silicone rubber on a two-roll mill.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3