EFFECT OF POLYMER CHAIN MODIFICATIONS ON ELASTOMER PROPERTIES

Author:

Bandzierz Katarzyna S.1,Reuvekamp Louis A. E. M.2,Dryzek Jerzy3,Dierkes Wilma K.2,Blume Anke2,Bieliński Dariusz M.1

Affiliation:

1. Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland

2. Elastomer Technology & Engineering, University of Twente, Enschede, the Netherlands

3. Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Abstract

ABSTRACT Considerable attention is paid to the influence of crosslink density and crosslink structures on the behavior of polymer chains and properties of elastomers. However, a very important parameter seems to be underestimated: the modifications to the polymer chains by curatives, formed by sulfur and fragments of accelerators. We draw attention to this important contribution to performance of spatial networks. The emulsion styrene–butadiene rubber samples, cured with tetramethylthiuram disulfide and sulfur (TMTD/S8) and zinc dialkyl dithiophosphate with sulfur (ZDT/S8), were studied. They were characterized in detail in terms of crosslink density and crosslink structures. Microscale techniques were used to obtain information about the behavior of the polymer chains: positron annihilation lifetime spectroscopy (PALS) to study the free volume structure and differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) to monitor the glass transition process. Properties such as static mechanical performance and thermo-oxidative stability were also evaluated. All of the investigated characteristics were influenced by a combination of crosslink density, crosslink structures, and, to a large extent, by the modifications of the polymer chains. The effect of the modifications is dependent on the amount and the structure of the curatives' molecules. On the basis of the obtained results, the usefulness of the “phr” unit used for calculation of the curatives' amount has been queried. Furthermore, it has been demonstrated that DSC, DMA, and PALS techniques can provide evidence for the presence of the modifications on the polymer chain by curatives.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3