DETERMINATION OF A SUITABLE CONDITION OF GRAFT COPOLYMERIZATION OF VINYLTRIETHOXYSILANE ONTO NR TO FORM NANOMATRIX STRUCTURE

Author:

Zhou Yuanbing1,Yamamoto Yoshimasa2,Kawahara Seiichi1

Affiliation:

1. Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

2. Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2, Kunugida-cho, Hachioji, Tokyo 193-0997, Japan

Abstract

ABSTRACT Graft copolymerization of vinyltriethoxysilane (VTES) onto NR particles in the latex stage is a unique reaction, since it occurs together with hydrolysis and condensation of the triethoxysilane group of VTES to form a colloidal silica linking to the rubber particles. These reactions may contribute to the formation of a silica nanomatrix structure that consists of a dispersoid of rubber particles as the major component and a silica matrix as the minor component. Here, the graft copolymerization of VTES followed by hydrolysis and condensation is investigated to determine a suitable condition to prepare NR with a silica nanomatrix structure. The mechanical properties of the resulting graft copolymer are discussed in relation to the morphology, silica content, and gel content of the rubber. Based on morphological observations, NR particles with an average diameter of approximately 1 μm are well dispersed in a nanomatrix consisting of silica nanoparticles. The thickness of the silica nanomatrix increases as the monomer concentration increases, and a long incubation time generates large silica nanoparticles. The tensile strength and viscoelastic properties are significantly improved by forming the silica nanomatrix structure, with its continuous structure that prevents the NR particles from merging.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3