INFLUENCE OF NANOFILLER ON THERMAL DEGRADATION RESISTANCE OF HYDROGENATED NITRILE BUTADIENE RUBBER

Author:

Saha Tuhin1,Bhowmick Anil K.1

Affiliation:

1. Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India

Abstract

ABSTRACT Studies on the degradation of elastomers and their prevention have become increasingly important in recent years because of stringent environmental conditions in many industrial applications. The reactive atomistic simulation was executed on a hydrogenated acrylonitrile-butadiene rubber (HNBR40) model compound composed of 40 monomer units. The reactive simulation was used to study the decomposition behavior of HNBR40, to visualize different pyrolysis products, and also to analyze the degradation mechanism of HNBR40. Ethylene, propylene, and acrylonitrile were observed as dominant products at lower temperature, and 1-butene was found at higher temperature. Pyrolysis–gas chromatography–mass spectrometry was used to verify the decomposition products obtained from the prediction of atomistic simulation. In this study, nanofillers, especially nanoclays and nanosilicas, were used to prevent degradation significantly. Restricted degradation by the nanofiller-reinforced rubber prolonged the durability. Furthermore, the reactive simulation was performed to understand thermal decomposition characteristics of the model compound in the presence of the nanofiller. The initial decomposition temperature, the final degradation temperature, and the rate of degradation improved to a great extent on the addition of the model nanosilica compound as obtained from the simulation studies. Moreover, the lifetime of nanoclay- and nanosilica-reinforced hydrogenated acrylonitrile–butadiene rubber was calculated by using thermogravimetric analysis, and its useful lifetime was compared with that of the pristine polymer in the application temperature range of 150 °C.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3