THE EFFECT OF ACRYLONITRILE CONTENT ON THE THERMO-OXIDATIVE AGING OF NITRILE RUBBER

Author:

Pazur Richard J.1,Cormier J. G.,Korhan-Taymaz K.

Affiliation:

1. Department of National Defence, Quality Engineering Test Establishment, 101 Colonel By Drive, Ottawa, Ontario K1A 0K2, Canada

Abstract

ABSTRACT The level of thermo-oxidative degradation in a series of unstabilized and unfilled nitrile rubbers (NBR) varying in acrylonitrile (ACN) content (18–43.5 wt%) was investigated on heat-aged samples (40–120 °C) by Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy. A similar degradation profile evolution was observed regardless of ACN content with the generation of hydroxyl-, carbonyl-, and ester-based products with a concomitant loss of the 1,4-trans, 1,4-cis, and 1,2-vinyl butadienes. The magnitude of IR active group absorption loss is greatest in the lowest ACN NBR concentration and steadily lessens toward higher ACN levels (1,4-cis > 1,2-vinyl > 1,4-trans >> butadiene methylenes). The 18% ACN NBR possesses two distinct kinetically different degradation regimes (80–120 and 40–80 °C). Activation energies by carbonyl growth and 1,4-trans loss increase from 71 to 87 kJ mol−1 and from 71 to 79 kJ mol−1 respectively, for decreasing ACN (43.5–18%) content. The rate of consumption of the 1,4-trans butadiene group is mainly affected by thermo-oxidative carbonyl-based and addition-cross-linking reactions, the latter being lower in activation energy for low to mid ACN NBRs. The high oxidation rate behavior of the lowest acrylonitrile rubber is attributed to its higher oxygen permeability rates. Cross-linking due to addition-type reactions is favored for higher 1,4 unsaturation levels.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3