CHLORINATION REACTION KINETICS OF THE LOW-CONCENTRATION NATURAL RUBBER LATEX

Author:

He Lanzhen1,Zhong Jieping1,Chen Jing2,Li Chenpen3,Kong Linxue3,Liao Xuequan4,Li Yin4

Affiliation:

1. College of Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, P. R. China

2. Chemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang 524048, P. R. China

3. Centre for Material and Fibre Innovation, Institute for Technology Research Innovation, Deakin Univerisity, Geelong VIC 3217, Australia

4. College of Materials and Chemical Engineering, Hainan Univerisity, Haikou 570228, P. R. China

Abstract

ABSTRACT The kinetics of the chlorination of low-concentration natural rubber latex was investigated. The kinetic data were derived from chlorine concentrations in chlorinated natural rubber (CNR) for different reaction times and temperatures. The chlorination reaction process can be divided into two stages—a high-speed period (stage 1) and a low-speed period (stage 2)—using the graphed curves of the change in chlorine content with change in reaction time. The relationship of the chlorination conversion ratio x to reaction time t and temperature T can be expressed as x = 1.15 − 0.916e−kt, where the kinetic constant k = 0.00907 + 6.39 × 10−6e0.0211T. The overall apparent reaction order n for the first stage is 4.8, whereas for the second stage it is 1.0, using kinetic fitting. The apparent activation energy Ea was calculated, using the Arrhenius equation, to be 5.32 kJ/mol for stage 2. The lower value of Ea suggests that the chlorination rate is less sensitive to reaction temperature in this stage. The chlorination reaction rate increases with the increase in reaction temperature during stage 2, but the effects are not visible. However, a temperature that is too high may result in energy being wasted. We conclude that the proper reaction temperature in stage 2, taking the kinetic effects into account, is between 323.15 and 353.15 K.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3