Correlation of Rubber Properties between Field Aged Tires and Laboratory Aged Tires

Author:

Bauer David R.1,Baldwin John M.1,Ellwood Kevin R.1

Affiliation:

1. 1Ford Motor Company, Dearborn, MI; email: jbaldw11@ford.com

Abstract

Abstract The kinetics of aging of key tire properties both in the field and in oven exposures at different temperatures has been interpreted by using a combination of empirical models and accelerated shift factors. Crosslink density and rubber modulus increase with aging while peel strength and elongation-to-break decrease. In the case of oven aging, the rate of property change increases from 40 °C to 70 °C and then decreases. In the case of field aging, the rate of property change is greatest in hotter climates such as Phoenix and is slower in cooler climates such as Detroit. Spare tires age at a rate that is ∼70% as fast as on-road tires. Below 70 °C, the rate data for all of the aging changes can be fit to an Arrenhius relationship with an activation energy of ∼69 kJ/mole, a value that is consistent with the aging process resulting from diffusion limited oxidation. The measured acceleration factor of oven aging at 70 °C relative to on-road aging in Phoenix is independent of the property change measured confirming that it is possible to chemically age tires in ovens. It takes 6–7 weeks of oven aging at 70 °C to produce a tire that is aged 4 years in Phoenix. Field results show that the rate of tire aging varies by over a factor of 5 for the different tire types and brands studied in this work. The implications for tire durability testing are discussed.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3