Accelerated Aging of Tires, Part III

Author:

Baldwin John M.1,Bauer David R.1,Ellwood Kevin R.1

Affiliation:

1. 1Ford Motor Company, Dearborn, MI; email: jbaldw11@ford.com

Abstract

Abstract The purpose of this research is to determine the conditions whereby a new tire can be artificially aged in an accelerated manner, in order to duplicate the actual mechanism of chemical aging observed in field-aged tires. The ultimate goal of the study is to age tires to a desired level, say equivalent to 4 years old, and then test the tires in durability, high speed, and performance tests. The previous paper described various oven aging methodologies and the data analysis techniques used. This paper will build on the previously described data analysis techniques developed for elongation at break measurements and apply them to swelling ratio data and peel strength data. By utilizing the method initially developed by Gillen and modified by this laboratory for use with tires, it has been shown that the skim rubber of tires oxidatively ages at oven temperatures between 40 °C and 70 °C when mounted and inflated with either air or a blend of 50/50 N2/O2. The methodology has been successfully extended from elongation at break data to peel strength and swelling ratio data. The calculation of the Arrhenius activation energy for diffusion of oxygen through new and aged rubber was also determined. The effect of aging on permeability is to reduce the permeability of oxygen and increase the activation energy. These results have important implications when attempting to model the diffusional aging characteristics of inflated tires. The effect of changing the partial pressure of oxygen and its concomitant effect on the acceleration of aging was also investigated. The results indicate that by doubling the partial pressure of oxygen, the rate of oxidation is increased by approximately 1.5 times. This result is entirely consistent with the theory of diffusion limited oxidation.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3