VULCANIZATION CHARACTERISTICS OF NATURAL RUBBER COAGULATED BY MICROORGANISMS

Author:

Li Si-Dong1,Chen Jing2,Li Le-Fan3,Wang Zhi-Fen3,Zhong Jie-Ping1,Yang Lei1

Affiliation:

1. College of Science, Guangdong Ocean University, Zhanjiang 524088, P.R. China

2. Chemistry and Chemical Engineering School, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, P.R. China

3. College of Materials and Chemical Engineering, Hainan University, Haikou 570228, P.R. China

Abstract

ABSTRACT The network variations of natural rubber (NR) during the vulcanization process were investigated by 1H chemical shift by liquid-state 1H nuclear magnetic resonance (NMR) spectroscopy. NR latex coagulated by microorganisms (NR-m) was contrasted with NR latex coagulated by acid (NR-a). The influences of the coagulation process on the structures, vulcanization characteristics, and mechanical properties of NR were analyzed. The results show that the cross-link density (XLD) and mass percentage of cross-link network (A(Mc)) can be increased with the increment of the vulcanization time; while the mass percentage of dangling free ends of the hydrocarbon and small molecules (A(T2)), the longitudinal relaxation time (T1), transverse relaxation time (T2), and molecular mass of inter–cross-link chains (Mc) decreased with the prolonging of vulcanization time both NR-m and NR-a. NR-m exhibits shorter scorch times (ts1, ts2) and optimum cure time (t90) and shows higher maximum torque (MH) and minimum torque (ML) than that of NR-a. It is obvious that the higher XLD and A(Mc) and lower A(T2), T1, T2, and Mc values of NR-m result in higher stress, tensile strength, and tear strength of NR compounds.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3