Updating a Torsional Dynamic Rheometer for Fourier Transform Rheometry on Rubber Materials

Author:

Leblanc Jean L.1,de la Chapelle Christophe1

Affiliation:

1. 1University P. & M. Curie (Paris 6) Polymer Rheology and Processing 60, rue Auber - F94408 Vitry-sur-Seine, France; email: jleblanc@ccr.jussieu.fr

Abstract

Abstract A torsional dynamic rheometer has been suitably modified in order to collect actual torque and strain data, in view of studying the non-linear viscoelastic region. Essentially a fast electronic analogic - digital conversion card is used to record and treat torque and strain signals using a purposely written software. A Fast Fourier Transform (FFT) algorithm was first used in order to resolve recorded signals in harmonic peak components. Preliminary investigations were conducted with pure elastomers and filled rubber compounds in order to asses the testing capabilities of the system. As expected, when the non-linear viscoelastic response of a pure, unfilled rubber is produced through increasing strain amplitude, a number of significant odd-harmonic peaks appear in the Fourier Transform Spectrum (FTS). When testing intrinsically non-linear materials such as carbon-black filled rubber compounds, FFT gives also significant odd-harmonics whose relative intensities growth with filler content. Fourier transform rheology has therefore the capability to truly investigate non-linear viscoelasticity but cannot at first sight distinguish between the non-linear behavior appearing upon increasing strain amplitude (extrinsic non-linearity) and the non-linear behavior that reflects the complex heterogeneity of the material (intrinsic non-linearity). Other data analysis techniques were thus investigated; for instance, the detail examination of the actual shape of half-period torque signals. It appears that torque signal distortions are different providing they are obtained either through larger strain amplitude tests on pure polymer or by increasing filler content.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3