Prognostic Performance of Alternative Lymph Node Classification Systems for Patients with Medullary Thyroid Cancer: A Single Center Cohort Study

Author:

Prassas Dimitrios,Kounnamas Aristodemos,Cupisti Kenko,Schott Matthias,Knoefel Wolfram Trudo,Krieg AndreasORCID

Abstract

Abstract Background Lymph node ratio (LNR) and the log odds of positive lymph nodes (LODDS) have been proposed as alternative lymph node (LN) classification schemes. Various cut-off values have been defined for each system, with the question of the most appropriate for patients with medullary thyroid cancer (MTC) still remaining open. We aimed to retrospectively compare the predictive impact of different LN classification systems and to define the most appropriate set of cut-off values regarding accurate evaluation of overall survival (OS) in patients with MTC. Methods 182 patients with MTC who were operated on between 1985 and 2018 were extracted from our medical database. Cox proportional hazards regression models and C-statistics were performed to assess the discriminative power of 28 LNR and 28 LODDS classifications and compare them with the N category according to the 8th edition of the AJCC/UICC TNM classification in terms of discriminative power. Regression models were adjusted for age, sex, T category, focality, and genetic predisposition. Results High LNR and LODDS are associated with advanced T categories, distant metastasis, sporadic disease, and male gender. In addition, among 56 alternative LN classifications, only one LNR and one LODDS classification were independently associated with OS, regardless of the presence of metastatic disease. The C-statistic demonstrated comparable results for all classification systems showing no clear superiority over the N category. Conclusion Two distinct alternative LN classification systems demonstrated a better prognostic performance in MTC patients than the N category. However, larger scale studies are needed to further verify our findings.

Funder

Heinrich-Heine-Universität Düsseldorf

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3