Expression of ERG11, ERG3, MDR1 and CDR1 genes in Candida tropicalis

Author:

Rojas Ana ElisaORCID,Cárdenas Leidy YuranyORCID,García María CamilaORCID,Pérez Jorge EnriqueORCID

Abstract

Introduction. Drug resistance to azoles is a growing problem in the Candida genus.Objective. To analyze molecularly the genes responsible for fluconazole resistance in Candida tropicalis strains.Materials and methods. Nineteen strains, with and without exposure to fluconazole, were selected for this study. The expression of MDR1, CDR1, ERG11, and ERG3 genes was analyzed in sensitive, dose-dependent sensitive, and resistant strains exposed to different concentrations of the antifungal drug.Results. MDR1, ERG11 and ERG3 genes were significantly overexpressed in the different sensitivity groups. CDR1 gene expression was not statistically significant among the studied groups. Seven of the eight fluconazole-resistant strains showed overexpression of one or more of the analyzed genes. In some dose-dependent sensitive strains, we found overexpression of CDR1, ERG11, and ERG3.Conclusion. The frequency of overexpression of ERG11 and ERG3 genes indicates that they are related to resistance. However, the finding of dose-dependent resistant/sensitive strains without overexpression of these genes suggests that they are not exclusive to this phenomenon. More basic research is needed to study other potentially involved genes in the resistance mechanism to fluconazole.

Publisher

Instituto Nacional de Salud (Colombia)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3