Abstract
Introduction. Due to the cross-reactivity between SARS-CoV-2 and common human coronaviruses, previous infections with these viruses could contribute to serological or cellular cross-protection against severe COVID-19. However, protective immunity may not develop, or pre-existing immunity could increase COVID-19 severity.Objective. To determine the seroprevalence of IgG antibodies against HCoV-NL63 and HCoV-HKU1 and correlate previous exposure with COVID-19 signs in patients from Villavicencio.Materials and methods. A cross-sectional retrospective study was conducted. ELISA technique was used to search for IgG antibodies against HCoV-NL3 and HCoV-HKU1 inpatients with positive RT-qPCR results for SARS-CoV-2. Patients were grouped according to COVID-19 clinical characteristics in four groups: group 1: asymptomatic (n = 23); group 2: hospitalized (n = 24); group 3: intensive care units (n = 24), and group 4: dead (n = 22).Results. The overall seroprevalence of IgG antibodies against HCoV was 74.2% (n = 69; 95% CI: 65.3-83.1), with 66.7% of HCoV-NL63 (n = 62; 95% CI: 57,1-76,2), and 25.8% of HCoV-HKU1 (n = 24; 95% CI: 16,9-34,7). Based on crosstab analysis, prior exposure to HCoV-NL63 was associated with protection against severe COVID-19 (p = 0.042; adjusted OR = 0.159; 95% CI: 0.027-0.938), and previous coinfection of HCoV-NL63 and HCoVHKU1 was considered a positive association to severe COVID-19 (p = 0.048; adjusted OR = 16.704; 95% CI: 1.020 - 273.670).Conclusion. To our knowledge, this is the first study addressing seroprevalence of HCoV IgG antibodies in Colombia and Latin America. Previous exposure to HCoV-NL63 could protect against severe COVID-19, whereas patients with underlying HCoV-NL63 and HCoVHKU1 coinfection could be hospitalized with severe signs of COVID-19.
Funder
Universidad de los Llanos
Publisher
Instituto Nacional de Salud (Colombia)
Reference58 articles.
1. Lai MM, Perlman S, Anderson LJ. Coronaviridae. In: Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1305-36.
2. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9
3. Drosten C, Günther S, Preiser W, van der Werf S, Brodt H, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967-76. https://www.nejm.org/doi/10.1056/NEJMoa030747
4. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers K, et al. Identification of a new human coronavirus. Nat Med. 2004;10:368-73. https://doi.org/10.1038/nm1024
5. Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884-95. https://doi.org/10.1128/jvi.79.2.884-895.2005