Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks

Author:

Asaad Renas Rajab,Ali Rasan I.

Abstract

Back propagation neural network are known for computing the problems that cannot easily be computed (huge datasets analysis or training) in artificial neural networks. The main idea of this paper is to implement XOR logic gate by ANNs using back propagation neural network for back propagation of errors, and sigmoid activation function. This neural network to map non-linear threshold gate. The non-linear used to classify binary inputs (x1, x2) and passing it through hidden layer for computing coefficient_errors and gradient_errors (Cerrors, Gerrors), after computing errors by (ei = Output_desired- Output_actual) the weights and thetas (ΔWji = (α)(Xj)(gi), Δϴj = (α)(-1)(gi)) are changing according to errors. Sigmoid activation function is = sig(x)=1/(1+e-x) and Derivation of sigmoid is = dsig(x) = sig(x)(1-sig(x)). The sig(x) and Dsig(x) is between 1 to 0.

Publisher

Nawroz University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3