Bloklanmış Üç Düzeyli Regresyon Süreksizlik Tasarımlarının Tasarım ve Analizinde Bir Düzeyinin Yok Sayılmasının Sonuçları: Güç ve Tip I Hata Oranları

Author:

DONG Nianbo1,BULUS Metin2

Affiliation:

1. University of North Carolina - Chapel Hill

2. ADIYAMAN UNIVERSITY

Abstract

Multilevel regression discontinuity designs have been increasingly used in education research to evaluate the effectiveness of policy and programs. It is common to ignore a level of nesting in a three-level data structure (students nested in classrooms/teachers nested in schools), whether unwittingly during data analysis or due to resource constraints during the planning phase. This study investigates the consequences of ignoring intermediate or top level in blocked three-level regression discontinuity designs (BIRD3; treatment is at level 1) during data analysis and planning. Monte Carlo simulation results indicated that ignoring a level during analysis did not affect the accuracy of treatment effect estimates; however, it affected the precision (standard errors, power, and Type I error rates). Ignoring the intermediate level did not cause a significant problem. Power rates were slightly underestimated, whereas Type I error rates were stable. In contrast, ignoring a top-level resulted in overestimated power rates; however, severe inflation in Type I error deemed this strategy ineffective. As for the design phase, when the intermediate level was ignored, it is viable to use parameters from a two-level blocked regression discontinuity model (BIRD2) to plan a BIRD3 design. However, level 2 parameters from the BIRD2 model should be substituted for level 3 parameters in the BIRD3 design. When the top level was ignored, using parameters from the BIRD2 model to plan a BIRD3 design should be avoided.

Publisher

Adiyaman University

Subject

General Medicine

Reference40 articles.

1. Balu, R., Zhu, P., Doolittle, F., Schiller, E., Jenkins, J., & Gersten, R. (2015). Evaluation of response to intervention practices for elementary school reading (NCEE 2016-4000). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. https://files.eric.ed.gov/fulltext/ED560820.pdf

2. Bickel, R. (2007). Multilevel analysis for applied research: It's just regression! Guilford Press.

3. Bulus, M. (2022). Minimum detectable effect size computations for cluster-level regression discontinuity: Specifications beyond the linear functional form. Journal of Research on Education Effectiveness, 15(1), 151-177. https://doi.org/10.1080/19345747.2021.1947425

4. Bulus, M., & Dong, N. (2021a). Bound constrained optimization of sample sizes subject to monetary restrictions in planning of multilevel randomized trials and regression discontinuity studies. The Journal of Experimental Education, 89(2), 379-401. https://doi.org/10.1080/00220973.2019.1636197

5. Bulus, M., & Dong, N. (2021b). cosa: Bound constrained optimal sample size allocation. R package version 2.1.0. https://CRAN.R-project.org/package=cosa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3