Arabic Poems Generation using LSTM, Markov-LSTM and Pre-Trained GPT-2 Models

Author:

Hakami Asmaa,Alqarni Raneem,Almutairi Mahila,Alhothali Areej

Abstract

Nowadays, artificial intelligence applications are increasingly integrated into every aspect of our lives. One of the newest applications in artificial intelligence and natural language is text generation, which has received considerable attention in recent years due to the advancements in deep learning and language modeling techniques. Text generation has been investigated in different domains to generate essays and books. Writing poetry is a highly complex intellectual process for humans that requires creativity and high linguistic capability. Several researchers have examined automatic poem generation using deep learning techniques, but only a few attempts have looked into Arabic poetry. Attempts to evaluate the generated pomes coherence in terms of meaning and themes still require further investigation. In this paper, we examined character-based LSTM, Markov-LSTM, and pre-trained GPT-2 models in generating Arabic praise poems. The results of all models were evaluated using BLEU scores and human evaluation. The results of both BLEU scores and human evaluation show that the Markov-LSTM has outperformed both LSTM and GPT-2, where the character-based LSTM model gave the lowest yields in terms of meaning due to its tendency to create unknown words.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sarid: Arabic Storyteller Using a Fine-Tuned LLM and Text-to-Image Generation;2024 16th International Conference on Computer and Automation Engineering (ICCAE);2024-03-14

2. Generation of Urdu Ghazals using Deep Learning;2023 International Conference on Frontiers of Information Technology (FIT);2023-12-11

3. Arabic Web Page Classification with AraBert and Mixture vectorization Methods: Analysis Using K-NN, LSTM and Naive Bayes;2023 Fourth International Conference on Intelligent Data Science Technologies and Applications (IDSTA);2023-10-24

4. Toward Fluent Arabic Poem Generation Based on Fine-tuning AraGPT2 Transformer;Arabian Journal for Science and Engineering;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3