An Approach using Machine Learning Model for Breast Cancer Prediction

Author:

Nafa Fatema,Gonzalez Enoc,Kaur Gurpreet

Abstract

Breast cancer is one of the most common diseases that causes the death of several women around the world. So, early detection is required to help decrease breast cancer mortality rates and save the lives of cancer patients. Hence early detection is a significant process to have a healthy lifestyle. Machine learning provides the greatest support to detect breast cancer in the early stage, since it cannot be cured and brings great complications to our health system. In this paper, novel models are generated for prediction of breast cancer using Gaussian Naive Bayes (GNB), Neighbour’s Classifier, Support Vector Classifier (SVC) and Decision Tree Classifier (CART). This paper presents a comparative machine learning study based to detect breast cancer by employing four different Machine Learning models. In this paper, experiment analysis carried out on a Wisconsin Breast Cancer dataset to evaluate the performance for the models. The computation of the model is simple; hence enabling an efficient process for prediction. The best overall accuracy for breast cancer detection is achieved equal to 94%. using Gaussian Naive Bayes.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3