TUNING TRADITIONAL LANGUAGE PROCESSING APPROACHES FOR PASHTO TEXT CLASSIFICATION

Author:

Baktash Jawid Ahmad,Dawodi Mursal,Zarif Mohammad,Hassanzada Nematullah

Abstract

Today text classification becomes critical task for concerned individuals for numerous purposes. Hence, several researches have been conducted to develop automatic text classification for national and international languages. However, the need for an automatic text categorization system for local languages is felt. The main aim of this study is to establish a Pashto automatic text classification system. In order to pursue this work, we built a Pashto corpus which is a collection of Pashto documents due to the unavailability of public datasets of Pashto text documents. Besides, this study compares several models containing both statistical and neural network machine learning techniques including Multilayer Perceptron (MLP), Support Vector Machine (SVM), K Nearest Neighbor (KNN), decision tree, gaussian naïve Bayes, multinomial naïve Bayes, random forest, and logistic regression to discover the most effective approach. Moreover, this investigation evaluates two different feature extraction methods including unigram, and Time Frequency Inverse Document Frequency (IFIDF). Subsequently, this research obtained average testing accuracy rate 94% using MLP classification algorithm and TFIDF feature extraction method in this context.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3