Identifying Exoplanets with Machine Learning Methods: A Preliminary Study

Author:

Jin Yucheng,Yang Lanyi,Chiang Chia-En

Abstract

The discovery of habitable exoplanets has long been a heated topic in astronomy. Traditional methods for exoplanet identification include the wobble method, direct imaging, gravitational microlensing, etc., which not only require a considerable investment of manpower, time, and money, but also are limited by the performance of astronomical telescopes. In this study, we proposed the idea of using machine learning methods to identify exoplanets. We used the Kepler dataset collected by NASA from the Kepler Space Observatory to conduct supervised learning, which predicts the existence of exoplanet candidates as a three-categorical classification task, using decision tree, random forest, naïve Bayes, and neural network; we used another NASA dataset consisted of the confirmed exoplanets data to conduct unsupervised learning, which divides the confirmed exoplanets into different clusters, using k-means clustering. As a result, our models achieved accuracies of 99.06%, 92.11%, 88.50%, and 99.79%, respectively, in the supervised learning task and successfully obtained reasonable clusters in the unsupervised learning task.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exoplanet Detection Using Machine Learning : A Comparative Study Using Kepler Mission Data;International Journal of Scientific Research in Science and Technology;2024-09-07

2. Datacube segmentation via deep spectral clustering;Machine Learning: Science and Technology;2024-07-22

3. Analysis of Exoplanet Habitability Using RNN and Causal Learning;Communications in Computer and Information Science;2024

4. Chandrayaan-3: Challenges and Opportunities of using AI to Detect and Identify Exoplanets;2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

5. Analysis of Exoplanet Detection Methods using Machine Learning and Deep Neural Networks;2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS);2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3