Federated Learning for Privacy-Preserving: A Review of PII Data Analysis in Fintech

Author:

Dash Bibhu,Sharma Pawankumar,Ali Azad

Abstract

There has been tremendous growth in the field of AI and machine learning. The developments across these fields have resulted in a considerable increase in other FinTech fields. Cyber security has been described as an essential part of the developments associated with technology. Increased cyber security ensures that people remain protected, and that data remains safe. New methods have been integrated into developing AI that achieves cyber security. The data analysis capabilities of AI and its cyber security functions have ensured that privacy has increased significantly. The ethical concept associated with data privacy has also been advocated across most FinTech regulations. These concepts and considerations have all been engaged with the need to achieve the required ethical requirements. The concept of federated learning is a recently developed measure that achieves the abovementioned concept. It ensured the development of AI and machine learning while keeping privacy in data analysis. The research paper effectively describes the issue of federated learning for confidentiality. It describes the overall process associated with its development and some of the contributions it has achieved. The widespread application of federated learning in FinTech is showcased, and why federated learning is essential for overall growth in FinTech.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning-Based Flood Forecasting Model Enhancing Predictive Accuracy and Privacy in Flood Prediction;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

2. Trustworthiness, Privacy, and Security in Federated Learning;Springer Optimization and Its Applications;2024-05-10

3. DROPFL: Client Dropout Attacks Against Federated Learning Under Communication Constraints;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Federated learning for multi-omics: A performance evaluation in Parkinson’s disease;Patterns;2024-03

5. Federated Learning for Credit Scoring Model Using Blockchain;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3