Spectrum Sharing between Cellular and Wi-Fi Networks based on Deep Reinforcement Learning

Author:

Ragchaa Bayarmaa,Kinoshita Kazuhiko

Abstract

Recently, mobile traffic is growing rapidly and spectrum resources are becoming scarce in wireless networks. Due to this, the wireless network capacity will not meet the traffic demand. To address this problem, using cellular systems in an unlicensed spectrum emerged as an effective solution. In this case, cellular systems need to coexist with Wi-Fi and other systems. For that, we propose an efficient channel assignment method for Wi-Fi AP and cellular NB, based on the DRL method. To train the DDQN model, we implement an emulator as an environment for spectrum sharing in densely deployed NB and APs in wireless heterogeneous networks. Our proposed DDQN algorithm improves the average throughput from 25.5% to 48.7% in different user arrival rates compared to the conventional method. We evaluated the generalization performance of the trained agent, to confirm channel allocation efficiency in terms of average throughput under the different user arrival rates.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference80 articles.

1. [1] Report ITU-R M.2370-0(07/2015) IMT traffic estimates for the years 2020 to 2030, M Series

2. Mobile, radio determination, amateur and related satellite services.

3. [2] Signals Research Group, ''The prospect LTE Wi-Fi sharing unlicensed spectrum'', Qualcomm, San

4. Diego, CA, USA, White Paper, Feb. 2015.

5. [3] M. Agiwal, A. Roy, et al., "Next Generation 5G Wireless Networks: A Comprehensive Survey,

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ML-based Spectrum Sharing Technique for Time-Sensitive Applications in Industrial Scenarios;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3