Face Expression Recognition using Convolution Neural Network (CNN) Models

Author:

Nour Nahla,Elhebir Mohammed,Viriri Serestina

Abstract

This paper proposes the design of a Facial Expression Recognition (FER) system based on deep convolutional neural network by using three model. In this work, a simple solution for facial expression recognition that uses a combination of algorithms for face detection, feature extraction and classification is discussed. The proposed method uses CNN models with SVM classifier and evaluates them, these models are Alex-net model, VGG-16 model and Res-Net model. Experiments are carried out on the Extended Cohn-Kanada (CK+) datasets to determine the recognition accuracy for the proposed FER system. In this study the accuracy of AlexNet model compared with Vgg16 model and ResNet model. The result show that AlexNet model achieved the best accuracy (88.2%) compared to other models.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in Facial Expression Recognition Using Machine and Deep Learning Techniques;Advances in Psychology, Mental Health, and Behavioral Studies;2024-05-14

2. Biometric Facial Recognition System and Expression Classifier Using Deep Learning;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. Facial Expression Based User Concentration Alert System;2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT);2023-11-23

4. Convolutional Neural Network based Human Emotion Recognition System: A Deep Learning Approach;2022 Smart Technologies, Communication and Robotics (STCR);2022-12-10

5. Facial Expression Recognition Using CNN;2022 International Conference on Artificial Intelligence in Everything (AIE);2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3