Affiliation:
1. Center of Geodesy, Cartography and SDI
2. Geoscan, ltd
Abstract
During the recent decade, unmanned aerial vehicles (UAV) have been widely implemented in practice of the aerial survey for the purposes of inventory and mapping. This led to a variety of aerial survey results in terms of both aerial survey parameters and accuracy. Under these conditions, the task of assessing the accuracy of the final product obtained from aerial photographs with a UAV, for example, an orthophoto or a digital elevation model becomes urgent. The Federal State Budgetary Institution “Federal Scientific-Technical Center of Geodesy, Cartography and Spatial Data Infrastructure”, having a metrological service accredited by Rosstandart for the right to conduct metrological certification of measurement methods and metrological examination of documents, makes research tests of hardware and software for digital aerial survey and photogrammetric processing, which determine the values of metrological qualities of hardware and software complexes. The authors present the results of such tests as applied to hardware-andsoftware complexes based on the Geoscan 101 UAV and the Geoscan 201 UAV equipped with Sony DSC RX-1 and Sony DSC-RX1RM2 cameras. The accuracy indicators were obtained for orthophotos, digital surface and relief models, coordinates of targeted and non targeted points of land boundaries and building contours for all land categories and permitted uses of land parcels in accordance with the requirements of the Order of the Ministry of Economic Development of the Russia from 01.03. 2016 No 90.
Publisher
FSBI Center of Geodesy, Cartography, and SDI
Subject
Computers in Earth Sciences,Earth-Surface Processes,Geophysics
Reference10 articles.
1. Anikeeva I.A., Kadnichanskiy S.A. (2017) Evaluation of the actual resolution of digital aerial and satellite imagery using an edge profile curve. Geodezia i Kartografia, 924(6), pp. 25-36. (In Russian). DOI: 10.22389/0016-7126-2017-924-6-25-36.
2. Beregovoi D.V., Mustafin M.G. (2018) Automated method of а topographic plan creation based on survey from a drone. Geodezia i Kartografia, 939(9), pp. 30-36. (In Russian). DOI: 10.22389/0016-7126-2018-939-9-30-36.
3. Inozemtsev D. P. Bespilotnye letatel'nye apparaty: teoriya i praktika. – Ch. 2. Model' obrabotki aerofotosnimkov v srede Agisoft PhotoScan. Avtomatizirovannye tekhnologii izyskanii i proektirovaniya, 2013, no. 3(50), pp. 48–51.
4. Lapteva M. I., Maslyanko V. Ya., Finazhin D. N., Chizhov M. N. Ispol'zovanie dannykh DZZ s primeneniem aerofotos"emochnogo kompleksa GeoScan’101 v SAPR AutoCAD Civil 3D (opyt raboty na ugol'nykh razrezakh SUEK). Avtomatizatsiya v promyshlennosti, 2014, no. 9, pp. 13–17.
5. Soloshchenko F. V., Grin'ko E. V., Kurkov M. V., Suzdal'tsev N. R. Opyt GK «Geoskan». Sozdanie vysokotochnoi trekhmernoi modeli Tul'skoi oblasti. Geoprofi, 2018, no. 2, pp. 10–14.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献