Affiliation:
1. Russian University of Transportation
Abstract
Invisibility between points can occur due to dense building location, terrain irregularities, intensive construction, and under polar night conditions. Forest thickets (the distance between the trunks up to 5 m, the closeness of the crowns start at 0,5 m) and undergrowth require cutting and clearing glades; terrain elevations, dense building setting, traffic flows and construction machines complicate the development of geodetic reference networks, the implementation of detailed surveys and construction layout. In the absence of visibility when the sides of the geodetic network make 200–500 m, it is recommended that two or more GPS receivers should work simultaneously under the same weather conditions, which compensates for errors at receiving radio signals, except for multipath and noise. With synchronous operation of the receivers, accurate coordinates and orientations for the upcoming electronic geodetic surveys are at mutually visible neighboring points obtained even without post-processing. Simultaneous GPS measurements enable finding the distance between them and horizontal angles in a closed area over the nearest points of the base and moving antennas in the building network for geodetic planning justification of detailed surveys and construction layout.
Publisher
FSBI Center of Geodesy, Cartography, and SDI
Subject
Computers in Earth Sciences,Earth-Surface Processes,Geophysics
Reference15 articles.
1. Bovshin N.A. (2016) On the accuracy estimation of continuously operated geodetic networks. Geodezia i Kartografia, 911(5), pp. 2–6. (In Russian). DOI: 10.22389/0016-7126-2016-911-5-2-6.
2. Bovshin N.A. (2016) On the accuracy estimation of continuously operated geodetic networks. Geodezia i Kartografia, 912(6), pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2016-912-6-2-7.
3. Bovshin N.A. (2016) On the accuracy estimation of continuously operated geodetic networks. Geodezia i Kartografia, 913(7), pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2016-913-7-2-7.
4. Vizirov Yu. V., Skvortsov A. D. GPS-izmereniya v neprosmatrivaemoi mestnosti. Tr. XIX Vseros. nauch.-prakt. konf. «Bezopasnost' dvizheniya poezdov», Moskva: MIIT, 2018, pp. I-5/6.
5. Vinogradov A.V., Voytenko A.V., Osipov P.S., Fedorovskiy A.A. (2018) Checking the optical plummet of the upper tribrach plate for adapter GNSS antennas. Geodezia i Kartografia, 932(2), pp. 10-16 . (In Russian). DOI: 10.22389/0016-7126-2018-932-2-10-16.