On the coordinate systems transformation

Author:

Neiman Yu.M.1ORCID,Sugaipova L.S.1ORCID

Affiliation:

1. Moscow State University of Geodesy and Cartography (MIIGAiK)

Abstract

Determination of coordinate systems’ parameters transformation has always been and remains the core of surveyors’ practical and theoretical works. However, in most cases, the issue is interpreted under the assumption that the angular rotation of the coordinate axes and the similarity parameter are very small, which enables a significant simplifying of the algorithm. In this paper the strict theory of determining the 7 and 9 parameters of coordinate systems transformation within the framework of nonlinear method of least squares with limitations is considered. Strict algorithm is described and numerical experiments are performed. The connection of the coordinate systems transformation theory with the general one of mathematical statistics, known under the name of Procrust analysis, is specified. However, in general, artificial neural network theory is recommended for conversion of one coordinate system to another. This generally eliminates the need for a prior determination of the transformation’s appropriate parameters, inevitably associated with hypotheses for the transformation model, but quickly and accurately solves the main problem.

Publisher

FSBI Center of Geodesy, Cartography, and SDI

Subject

Computers in Earth Sciences,Earth-Surface Processes,Geophysics

Reference12 articles.

1. Demmel' Dzh. Vychislitel'naya lineinaya algebra. Per. s angl. pod red. Kh. D. Ikramova. Moskva: Mir, 2001, 430 p.

2. Kallan R. Osnovnye kontseptsii neironnykh setei. Per. s angl. A. G. Sivaka. Moskva: Vil'yamc, 2001, 287 p.

3. Piskunov N. S. Differentsial'noe i integral'noe ischisleniya: Ucheb. dlya vtuzov. Moskva: Integral-Press, 2002, 2 Vol. 1, 416 p.

4. Akca D. (2003) Generalized Procrustes analysis and its applications in photogrammetry. Zuerich: Institute of Geodesy and Photogrammetry. ETH-Hoenggerberg. 23 p. DOI: 10.3929/ethz-a-004656648.

5. Awange J. L., Bae K.-H., Claessens S. J. (2008) Procrustean solution of the 9-parameter transformation problem. Earth Planets Space, no. 60, pp. 529–537.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3