Cylindrical projections of triaxial ellipsoid: precise formulae and elliptical integrals

Author:

Fleis M.E.1ORCID,Nyrtsov M.V.2ORCID,Sokolov A.I.2ORCID

Affiliation:

1. Institute of Geography RAS

2. Lomonosov Moscow State University (MSU)

Abstract

Cylindrical projections of a triaxial ellipsoid are used for global mapping the surfaces of celestial bodies, the figures of which the International Astronomical Union recommends to approximate by the mathematical surface of the mentioned geometric body. Its reference surface and projections are not available in GIS packages. In this regard, we are facing the problem of representing projection formulae in finite elementary functions or reducing the integrals included in them to elliptic ones. This will simplify direct and inverse transformations of such map projections for inclusion in GIS software. The authors present formulae for obtaining coordinates for cylindrical projections of a triaxial ellipsoid. Determining the horizontal coordinate for all those projections is reduced to the calculation of an elliptic integral of the second kind, as well as determining the vertical coordinate of a cylindrical projection which preserves lengths along the meridians. To determine that coordinate in an equal-area cylindrical projection, original formulae were obtained that enables representing the corresponding integral in elementary functions. For the vertical coordinate in the cylindrical projection of the meridian section similar formulae deduced in previous studies are presented. The definition of a vertical coordinate in a projection preserving the angle between the meridian and the parallel is reduced to the calculation of elliptic integrals of the first, second, and third kind. Thus, the formulae derived in the article can be used when including cylindrical projections of a triaxial ellipsoid in geoinformation technologies.

Publisher

FSBI Center of Geodesy, Cartography, and SDI

Subject

Computers in Earth Sciences,Earth-Surface Processes,Geophysics

Reference3 articles.

1. Zhuravskii A. M. Spravochnik po ellipticheskim funktsiyam. M.-L.: Izd-vo Akad. nauk SSSR, 1941, 236 p.

2. Nyrtsov M.V., Fleis M.E., Sokolov A.I. (2021) Meridian section projections: a new class of the triaxial ellipsoid projections. Geodezia i Kartografia, 82(2), pp. 11-22. (In Russian). DOI: 10.22389/0016-7126-2021-968-2-11-22.

3. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady. Moskva: Fizmatlit, 2002, Vol. 1, 632 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3