GNSS orbit approximation by means of artificial neural networks

Author:

Neiman Yu.M.1ORCID,Sugaipova L.S.1ORCID

Affiliation:

1. Roskadastr, PLC

Abstract

The possibilities of using artificial neural networks (ANN) to approximate and extrapolate the orbits of GNSS satellites (global navigation satellite systems) are explored. Numerical experiments are performed using radial basis function networks (RBFN), as they are trained quickly enough and convenient for working with a small amount of data. The results show that RBFN successfully handle both interpolation and short-term satellite orbit prediction (extrapolation) and have notable advantages over traditionally used polynomial methods both in terms of accuracy achieved, and the speed of calculations. In particular, it is possible to use a single neural network to interpolate (extrapolate) all components of the location, while the standard approach requires a separate polynomial for each satellite coordinate

Publisher

FSBI Center of Geodesy, Cartography, and SDI

Reference8 articles.

1. Pustoshilov A. S., Ushakov Yu. Yu., Tsarev S. P. Dvukhtochechnaya svobodnaya nelineinaya interpolyatsiya koordinat i skorostei navigatsionnykh sputnikov po SP3-dannym. Uspekhi sovremennoi radioelektroniki, 2018, no. 12, pp. 151–155.

2. Pustoshilov A. S., Tsarev S. P. Vysokotochnoe vosstanovlenie orbit sputnikov GNSS metodom obucheniya po rasshirennym SP3-dannym. Uspekhi sovremennoi radioelektroniki, 2017, no. 12, pp. 48–52.

3. Feng Y., Zheng Y. (2005) Efficient interpolations to GPS orbits for precise wide area applications. GPS Solutions, no. 9 (4), pp. 273–282. DOI: 10.1007/s10291-005-0133-y.

4. Gou J., Rösch C., Shehaj E., Chen K., Shahvandi M. K., Soja B., Rothacher M. (2023) Modeling the differences between ultra-rapid and final orbit products of GPS satellites using Machine-Learning Approaches. Remote Sensing, no. 15 (23): 5585, DOI: 10.3390/rs15235585.

5. Horemuz M., Andersson J. V. (2006) Polynomial interpolation of GPS satellite coordinates. GPS Solutions, no. 10 (1), pp. 67–72. DOI: 10.1007/s10291-005-0018-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3