Affiliation:
1. Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
2. Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
Abstract
When conducting systematic reviews and meta-analyses of continuous outcomes, the mean differences (MDs) and standardized mean differences (SMDs) are 2 commonly used choices for effect measures. The SMDs are motivated by scenarios where studies collected in a systematic review do not report the continuous measures on the same scale. The standardization process transfers the MDs to be unit-free measures that can be synthesized across studies. As such, some evidence synthesis researchers tend to prefer the SMD over the MD. However, other researchers have concerns about the interpretability of the SMD. The standardization process could also yield additional heterogeneity between studies. In this paper, we use simulation studies to illustrate that, in a scenario where the continuous measures are on the same scale, the SMD could have considerably poorer performance compared with the MD in some cases. The simulations compare the MD and SMD in various settings, including cases where the normality assumption of continuous measures does not hold. We conclude that although the SMD remains useful for evidence synthesis of continuous measures on different scales, the SMD could have substantially greater biases, greater mean squared errors, and lower coverage probabilities of CIs than the MD. The MD is generally more robust to the violation of the normality assumption for continuous measures. In scenarios where continuous measures are inherently comparable or can be transformed to a common scale, the MD is the preferred choice for an effect measure.
Publisher
Ovid Technologies (Wolters Kluwer Health)