Meta-analysis on studies with heterogeneous and partially observed covariates

Author:

Akkaya Hocagil Tugba12ORCID,Hwang Hon3,Jacobson Joseph L.4,Jacobson Sandra W.4,Ryan Louise M.35

Affiliation:

1. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada

2. Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkiye

3. School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia

4. Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA

5. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Abstract

Individual participant data meta-analysis is a commonly used alternative to the traditional aggregate data meta-analysis. It is popular because it avoids relying on published results and enables direct adjustment for relevant covariates. However, a practical challenge is that the studies being combined often vary in terms of the potential confounders that were measured. Furthermore, it will inevitably be the case that some individuals have missing values for some of those covariates. In this paper, we demonstrate how these challenges can be resolved using a propensity score approach, combined with multiple imputation, as a strategy to adjust for covariates in the context of individual participant data meta-analysis. To illustrate, we analyze data from the Bill and Melinda Gates Foundation–funded Healthy Birth, Growth, and Development Knowledge Integration project to investigate the relationship between physical growth rate in the first year of life and cognition measured later during childhood. We found that the overall effect of average growth velocity on cognitive outcome is slightly, but significantly, positive with an estimated effect size of 0.36 (95% CI 0.18, 0.55).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3