Photolithography Alignment Mark Transfer System for Low Cost, Advanced Packaging, and Bonded Wafer Applications

Author:

Swarbrick Tom1,Best Keith,Donaher Casey,Gardner Steve

Affiliation:

1. Rudolph Technologies, VP Engineering, 16 Jonspin Road, Wilmington, MA, 1887, USA

Abstract

Advanced packaging technologies continue to enable the semiconductor industry to meet the needs for ever thinner, smaller and faster components required in mobile devices and other high performance applications. However, the increase in chip I/O count, driven by Moore's law, and the ability to produce FinFETs below 10nm has presented numerous additional challenges to the existing advanced packaging processes. Furthermore, unlike Moore's law, which predicted the number of transistors in a dense integrated circuit to double approximately every two years, advanced packaging is experiencing an alternate “law”; where instead of the number of transistors increasing, it is the number of functions increasing, within the ever decreasing volume constraints of the final product that drives the technology roadmap. Inevitably, as functionality increases, so does the process complexity and cost. And in the very cost sensitive advanced packaging arena, Outsourced Semiconductor Assembly and Test suppliers (OSATs) need to compensate by reducing their manufacturing costs. This requires the OSAT to reduce material costs, increase throughput, yield, and look for new ways to reduce the number of process steps. One of the ways in which the OSATs have reduced the cost of materials is by removing the silicon wafer from the backend processing altogether; using epoxy mold compound (EMC) to create reconstituted wafers, or by using glass carriers. In the case of glass carriers, it is often the case, where the dice are attached face down on the carrier and subsequent processing prevents the front side patterns from being visible from the top side of the composite stack, even with Infrared (IR) imaging. In this particular case, an additional lithography “clear out” window is defined in photoresist over the alignment mark so the opaque film can be etched away from the alignment mark, the resist is then stripped and cleaned. This additional processing is obviously costly and time consuming. This paper specifically focuses on the concepts, methodology, and performance of a stepper based photolithography solution that utilizes a photoresist latent image to provide temporary alignment marks for the lithography process, removing the need for the additional patterning and etching steps. This revolutionary system employs a backside camera, to align to die through the carrier. A separate exposure unit, calibrated to the alignment camera center, exposes temporary latent image targets which are then detected by the system's regular alignment system during the normal stepper lithography operation. The performance data for the alignment, overlay, and latent image depth control are discussed in detail. The final analysis proves that overlay of < 2um is readily achievable, with no impact on system throughput.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3