CubeSat Fabrication through Additive Manufacturing and Micro-Dispensing

Author:

Gutierrez Cassie1,Salas Rudy1,Hernandez Gustavo1,Muse Dan1,Olivas Richard1,MacDonald Eric1,Irwin Michael D.1,Wicker Ryan1,Newton Mike2,Church Ken2,Zufelt Brian3

Affiliation:

1. W. M. Keck Center for 3D Innovation, The University of Texas at El Paso , El Paso, Texas 79968

2. nScrypt, Inc., 12151 Research Parkway, Suite 150, Orlando, Florida 32826

3. COSMIAC, 2350 Alamo Avenue SE, Ste. 100, Albuquerque, NM 87106

Abstract

Fabricating entire systems with both electrical and mechanical content through on-demand 3D printing is the future for high value manufacturing. In this new paradigm, conformal and complex shapes with a diversity of materials in spatial gradients can be built layer-by-layer using hybrid Additive Manufacturing (AM). A design can be conceived in Computer Aided Design (CAD) and printed on-demand. This new integrated approach enables the fabrication of sophisticated electronics in mechanical structures by avoiding the restrictions of traditional fabrication techniques, which result in stiff, two dimensional printed circuit boards (PCB) fabricated using many disparate and wasteful processes. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing and robotic pick-and-place for component placement can 1) provide the capability to print-on-demand fabrication, 2) enable the use of micron-resolution cavities for press fitting electronic components and 3) integrate conductive traces for electrical interconnect between components. The fabrication freedom introduced by AM techniques such as stereolithography (SL), ultrasonic consolidation (UC), and fused deposition modeling (FDM) have only recently been explored in the context of electronics integration and 3D packaging. This paper describes a process that provides a novel approach for the fabrication of stiff conformal structures with integrated electronics and describes a prototype demonstration: a volumetrically-efficient sensor and microcontroller subsystem scheduled to launch in a CubeSat designed with the CubeFlow methodology.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3