A Photo-Desmear Method for Via Residue Removal Using a VUV Light Source

Author:

Habu Tomoyuki1,Yabu Shintaro1,Hirose Kenichi1,Horibe Hiroki1,Fujinami Toru2,Kitano Naoki3,Ozawa Eiji3,Bhattacharjee Sanchali4,Andideh Ebrahim4,Sobieski Daniel4

Affiliation:

1. Ushio Inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 671-0224 Japan

2. Ushio America, Inc., 5440 Cerittos Ave. Cypress, CA 90630 USA

3. Intel K.K., 5-6 Tokodai, Tsukuba-shi Ibaraki-ken, 300-2695 Japan

4. Intel Corp., 5000 W, Chandler Blvd Ch2-205 Chandler, AZ 85226 USA

Abstract

The desmear process of removing via residue after laser drill in substrate manufacturing is a critical step for reliability and electrical performance. Cost effective and environmentally clean desmear processes are industry-wide objectives, as the current wet desmear process results in significant chemical waste and regular bath replacement. Here, we evaluated an effective photo desmear method targeting a low total cost of ownership and negligible environmental impact. This method achieves residue and silica free via bottoms with the use of 172nm vacuum ultraviolet light (VUV) photo-chemical ashing followed by water clean. Studies of organic molecular photochemical decomposition by short wavelength UV light are widely reported and have been applied for purposes such as surface cleaning and improving wettability and are naturally extendable to via residue removal. Scanning electron microscope (SEM) and energy dispersed X-ray spectroscopy (EDX) reveal that the application of VUV desmear results in residue free microvia without negatively affecting via shape or the dielectric surface. In addition, the surface remains highly wettable, which aids downstream copper plating. The high reaction rate, absence of wet chemistry, and creation of surfaces amenable for subsequent copper plating make this dry desmear process a strong candidate for future applications in substrate manufacturing.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Result of Highly Accelerated Stress Test of Organic Substrate Made by Integrated Dry Process;Transactions of The Japan Institute of Electronics Packaging;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3