Large Scale Photodesmear for Via Residue Cleaning in High Density Interconnect substrates

Author:

Habu Tomoyuki1,Namai Masahito1,Aiba Akira1,Kikuiri Hajime1,Maruyama Shun1,Horibe Hiroki1,Suzuki Hiroko1,Endo Shinichi1,Fujinami Toru2,Yabu Shintaro2,Jain Rahul3,Darmawikarta Kristof3,Obrien Michael3

Affiliation:

1. Ushio Inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 671-0224 Japan

2. Ushio America, Inc., 5440 Cerritos Ave. Cypress, CA 90630 USA

3. Intel Corporation, 5000 W. Chandler Blvd, Chandler, AZ 85226, United States

Abstract

Smear residue from the build-up dielectric material is left at the bottom of the microvia after laser drill process which, if not cleaned, poses risk to the electrical functionality of the device. Thus, microvia cleanliness is the key to a reliable and electrically functional device. Currently, industry employs a wet process to clean the etch residue that results in significant chemical waste. Here, we evaluated an alternative, but effective Photodesmear method that provides a low cost of ownership and almost negligible environmental impact. We have demonstrated in IMAPS 2013 that this process can achieve residue- and silica filler free via bottoms by a two-step process: i) illuminating 172 nm vacuum ultraviolet light (VUV) on the panels, resulting in a photochemical ashing, and ii) a water clean. This process does not reduce the surface energy of the build-up material, thus not impacting the downstream processes. The main technical challenge in developing Photodesmear technology will be panel level uniformity in cleaning all the microvias within the same process step. We have demonstrated that our process can achieve a highly uniform treatment over 510 mm wide panels. The process was optimized to clean microvias with a range of aspect ratios on insulating film (material N) drilled by CO2 laser. The microvia bottoms were also found to be clean when the vias were drilled by UV laser to test the desmear capability. The quality of the Photodesmear was tested by measuring the peel strength between electrolytically plated Cu and dielectric surface, and by performing the quick via pull (QVP) to verify the failing interface. We found high peel strength of 0.7 kgf/cm when sputtered Cu seed layer was used. QVP experiments confirmed that the via residue is cleaned effectively since the interface between the plated Cu and the underlying Cu pad did not fail. This study shows that Photodesmear process is capable to produce clean vias along with acceptable peel strength. Future issues are to research the reliability, productivity, and cost of the Photodesmear process to compare with the existing process.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Result of Highly Accelerated Stress Test of Organic Substrate Made by Integrated Dry Process;Transactions of The Japan Institute of Electronics Packaging;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3