Packaging Technology of Multi Deflection Arrays for Multi-Shaped Beam Lithography

Author:

Burkhardt T.12,Mohaupt M.1,Hornaff M.1,Zaage B.1,Beckert E.1,Döring H.-J.3,Slodowski M.3,Reimer K.4,Witt M.4,Eberhardt R.1,Tünnermann A.12

Affiliation:

1. 1Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany

2. 2Institute for Applied Physics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany

3. 3Vistec Electron Beam GmbH, Goeschwitzer Str. 25, 07744 Jena, Germany

4. 4Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, 25524 Itzehoe, Germany

Abstract

Multi-Shaped electron beam lithography is considered a promising approach for high throughput mask and direct writing. Providing multiple apertures and individually controlled electrodes it allows for massive parallelization of exposure shots, thus significantly decreasing write time. A silicon-based micro-structured MEMS multi-beam deflection array (MDA) featuring 8×8 apertures is presented. The hybrid integration of MDA devices in ceramic system carriers utilizing a laser-based Solderjet Bumping process is demonstrated. This flux-free soldering process provides adhesive-free, long term stable and vacuum compatible joints and is used for both mechanical fixation and electrical connection. Electron beam deflection in two perpendicular directions requires the highly accurate placement of two crossed MDA devices, which is carried out by three degrees of freedom alignment procedures and solder joining. Electrical signal routing within the electron optical column using flexible printed circuit boards and flux-free soldering is also reported. The precision adjustment of two carriers is accomplished by fiducial mark detection using image processing. Results on alignment accuracy in the sub-micron range, mechanical and electrical testing of such assemblies are reported.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3