Advanced Thermal Management Solutions on PCBs for High Power Applications

Author:

Langer Gregor,Leitgeb Markus,Nicolics Johann,Unger Michael,Hoschopf Hans,Wenzl Franz P.

Abstract

With increasing power loss of electrical components, thermal performance of an assembled device becomes one of the most important quality factors in electronic packaging. Due to rapid advances in semiconductor technology, particularly in the field of high-power components, the temperature distribution inside of a component is a critical parameter of long-term reliability and must be carefully considered during the design phase. Two main drivers in the electronics industry are miniaturization and reliability. Whereas there is a continuous improvement concerning miniaturization of conductor tracks (i.e., lines and spaces have been reduced continuously over the past years), miniaturization of the circuit carrier itself, however, has mostly been limited to decreased layer counts and base material thickness. This can lead to significant component temperature increase and thence to accelerated system degradation. Enhancement of the system reliability is directly connected to an efficient thermal management on the PCB level. There are several approaches that can be used to address this issue: optimization of the board design, use of base materials with advanced thermal performance, and use of innovative buildup concepts. The paper provides a short overview about standard thermal solutions such as thick copper, thermal vias, plugged vias, or metal core based PCBs. Furthermore, attention will be focused on the development of copper filled thermal vias in thin board construction. In another approach, advanced thermal management solutions are presented at the board level, exploring different buildup concepts (e.g., cavities). Advantages of cavity solutions in the board are shown that not only decrease the thermal path leading from the high power component through the board to the heat sink, but also have an impact concerning the mechanical miniaturization of the entire system (reduction of z axis). Such buildups serve as a favorable packaging solution with promising thermal performance. Moreover, using thermal simulations different setups are compared and a deeper insight into the thermally relevant geometry and material parameters is provided, allowing production efforts to be reduced and to offering optimized designs and board buildups.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3