Experimental Analysis of a Voice-Coil-Driven Jetting System for Micrograms Fluid Depositions in Electronics Assembly

Author:

Iyer Rajiv L.,Santos Daryl L.

Abstract

Abstract The fundamental ability to drive automatically to independent locations and deposit controlled masses of electronics packaging adhesives makes dispensing an attractive solution in the electronics assembly. The existence of modern technology such as smartphones, wearable devices (watches, glasses, etc.), and tablets have led to tightly spaced, and high-density component packaging which further causes complex designs in the Printed Circuit Board (PCB) assembly. Advancements in dispensing technology because of these growing challenges in assembly has led to use of jetting systems in this new arena. The process of jetting, unlike traditional dispensing, has the ability to deposit controlled masses of packaging adhesives (also known as packaging fluids) at tightly spaced locations with high accuracy and high speed and at much higher deposition heights from the substrate. In this article, a voice-coil-driven jetting system is studied to assess the capability of jetting micrograms of electronics packaging fluids. The article presents experimental analyses to study jetting of micrograms of fluid droplets. Critical input factors are evaluated using a split-plot design of experiment (DOE) model to understand their significance in governing the responses. The responses studied in this work are the following: mass per droplet, dot diameter, and dispense quality. The applied DOE model will assist in developing prediction models to determine the optimal combination of factors in achieving desired responses.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3