Author:
Belavic Darko,Hrovat Marko,Dolanc Gregor,Makarovic Kostja,Zarnik Marina Santo
Abstract
Advanced microsystems or macrosystems are in some cases made with multilayer ceramic technology. Low-temperature cofired ceramic (LTCC) technology is considered to be one of the more suitable technologies for the fabrication of ceramic microsystems that integrate screen-printed, thick-film electronic components as well as three-dimensional buried structures, for example, cavities and channels. One of the applications is a ceramic combustor. The chemical energy of the fuel is converted into thermal energy in a chemical microcombustor through a burning process, while the accompanying high temperatures and, frequently, high pressures, impose harsh conditions on the combustor structure. Therefore, the combustor must be carefully designed not only from the functional, thermal, and chemical points of view, but also with respect to the mechanical strength.
The combustor device was prepared by lamination of Du Pont 951PX LTCC green tapes. The fabricated 3D LTCC structures with buried cavities and channels including two inlets (for fuel and air), the evaporator for the fuel, the mixing system of the channels (for mixing the evaporated fuel and air), the distribution channels and eight microburners were realized. The main parts are eight microburners realized as buried cavities. In the burners, a platinum-based catalyst was deposited to assist the oxidation, that is, the burning, of the methanol with the air. Thick-film, platinum-based heaters and temperature sensors are incorporated within the structure. The device was tested with different flow rates of liquid methanol (1 mL/h to 5 mL/h) and air (7 L/h to 15 L/h). The temperatures obtained were between 250°C and 450°C.
Publisher
IMAPS - International Microelectronics Assembly and Packaging Society
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献