Comparison of item response theory ability and item parameters according to classical and Bayesian estimation methods

Author:

Selçuk Eray1ORCID,Demir Ergül2ORCID

Affiliation:

1. T.C. MİLLİ EĞİTİM BAKANLIĞI

2. ANKARA ÜNİVERSİTESİ, EĞİTİM BİLİMLERİ FAKÜLTESİ, ÖLÇME VE DEĞERLENDİRME BÖLÜMÜ, EĞİTİMDE ÖLÇME VE DEĞERLENDİRME ANABİLİM DALI

Abstract

This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item parameters estimated according to the maximum likelihood and Bayesian method and the differences in the RMSE of these parameters were examined. The priori distribution (normal, left-skewed, right-skewed, leptokurtic, and platykurtic), test length (10, 20, 40), sample size (100, 500, 1000), logistics model (2PL, 3PL). The simulation conditions were performed with 100 replications. Mixed model ANOVA was performed to determine RMSE differentiations. The prior distribution type, test length, and estimation method in the differentiation of ability parameter and RMSE were estimated in 2PL models; the priori distribution type and test length were significant in the differences in the ability parameter and RMSE estimated in the 3PL model. While prior distribution type, sample size, and estimation method created a significant difference in the RMSE of the item discrimination parameter estimated in the 2PL model, none of the conditions created a significant difference in the RMSE of the item difficulty parameter. The priori distribution type, sample size, and estimation method in the item discrimination RMSE were estimated in the 3PL model; the a priori distribution and estimation method created significant differentiation in the RMSE of the lower asymptote parameter. However, none of the conditions significantly changed the RMSE of item difficulty parameters.

Publisher

International Journal of Assessment Tools in Education

Reference76 articles.

1. Akour, M., & Al-Omari, H. (2013). Empirical investigation of the stability of IRT item-parameters estimation. International Online Journal of Educational Sciences, 5(2), 291-301.

2. Atar, B. (2007). Differential item functioning analyses for mixed response data using IRT likelihood-ratio test, logistic regression, and GLLAMM procedures [Unpublished doctoral dissertation, Florida State University]. http://purl.flvc.org/fsu/fd/FSU_migr_etd-0248

3. Baker, F.B. (2001). The basics of item response theory (2nd ed.). College Park, (MD): ERIC Clearinghouse on Assessment and Evaluation.

4. Baker, F.B., & Kim, S. (2004). Item response theory: Parameter estimation techniques (2nd ed.). Marcel Dekker.

5. Barış-Pekmezci, F. & Şengül-Avşar, A. (2021). A guide for more accurate and precise estimations in simulative unidimensional IRT models. International Journal of Assessment Tools in Education, 8(2), 423-453. https://doi.org/10.21449/ijate.790289

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3