Abstract
The proliferation of large language models represents a paradigm shift in the landscape of automated essay scoring (AES) systems, fundamentally elevating their accuracy and efficacy. This study presents an extensive examination of large language models, with a particular emphasis on the transformative influence of transformer-based models, such as BERT, mBERT, LaBSE, and GPT, in augmenting the accuracy of multilingual AES systems. The exploration of these advancements within the context of the Turkish language serves as a compelling illustration of the potential for harnessing large language models to elevate AES performance in in low-resource linguistic environments. Our study provides valuable insights for the ongoing discourse on the intersection of artificial intelligence and educational assessment.
Publisher
International Journal of Assessment Tools in Education
Reference46 articles.
1. Akın, A.A., & Akın, M.D. (2007). Zemberek, an open source NLP framework for Turkic languages. Structure, 10(2007), 1-5.
2. Arslan, R.S., & Barişçi, N. (2020). A detailed survey of Turkish automatic speech recognition. Turkish Journal of Electrical Engineering and Computer Sciences, 28(6), 3253-3269.
3. Bird, S. (2006, July). NLTK: the natural language toolkit. In Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions (pp. 69-72).
4. Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., ... & Weinbach, S. (2022). Gpt-neox-20b: An open-source autoregressive language model. arXiv preprint arXiv:2204.06745.
5. Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.