Educating non-specialized audiences about seismic design principles using videos and physical models

Author:

Morales-beltran Mauricio1ORCID,Kızılörenli Ecenur1ORCID,Duyal Ceren2ORCID

Affiliation:

1. YASAR UNIVERSITY, FACULTY OF ARCHITECTURE

2. Eindhoven University of Technology

Abstract

The prevalence of self-construction practices in Türkiye has resulted in a building stock whose earthquake resilience is highly uncertain. To mitigate the potentially devastating impact of anticipated large earthquakes, one viable approach is to increase earthquake awareness among builders themselves. However, these builders lack formal engineering training and are ordinary citizens. Therefore, the challenge lies in devising visual teaching methods, such as short videos, to explain complex seismic phenomena in a comprehensible manner. This paper introduces the use of educational media tailored for non-specialized audiences, encompassing regular citizens and students without engineering backgrounds. These videos are based on experiments conducted with physical models on a homemade shake table. They focus on key factors influencing the seismic response of multi-storey buildings and highlight common design and construction errors that lead to building damage. To assess the effectiveness of this approach, we conducted a workshop with junior architecture students, followed by post-workshop qualitative assessments through knowledge surveys and interviews. The findings indicate that while single-topic videos were effective learning tools for students without prior knowledge of seismic building design, students found models particularly useful for explaining specific concepts such as torsional behavior, the role of diaphragms, and the performance of non-structural components. However, despite positive feedback on the effectiveness of model testing, students generally did not perceive significant knowledge acquisition in model construction. Ultimately, the accessibility of freely available videos, coupled with their enhanced educational value, makes them effective tools for raising seismic awareness in communities vulnerable to future earthquakes.

Publisher

International Journal of Assessment Tools in Education

Reference46 articles.

1. Adeoye-Olatunde, O.A., & Olenik, N.L. (2021) Research and scholarly methods: Semi-structured interviews. Journal of the American College of Clinical Pharmacy, 4, 1358–1367. https://doi.org/10.1002/jac5.1441

2. Ahn, B., & Bir, D.D. (2018). Student Interactions with Online Videos in a Large Hybrid Mechanics of Materials Course. Advances in Engineering Education, 6(3), 1-24

3. BAP103 Deprem & Binalar. (2021). Earthquakes & Buildings. YouTube. https://www.youtube.com/@earthquakesbuildings5063

4. Benadusi, M. (2014). Pedagogies of the unknown: Unpacking ‘culture’in disaster risk reduction education. Journal of Contingencies and Crisis Management, 22(3), 174-183.

5. Biggs, J., & Tang, C. (2011). Teaching for Quality Learning at University (4th ed.). McGraw-hill education (UK).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3