1. Ackerman, T.A. (1991). The use of unidimensional parameter estimates of multidimensional items in adaptive testing. Applied Psychological Measurement, 15(1), 13-24.
2. Aybek, E.C. (2016). Kendini Değerlendirme Envanteri’nin bilgisayar ortamında bireye uyarlanmış test (BOBUT) olarak uygulanabilirliğinin araştırılması [An investigation of applicability of the self assessment inventory as a computerized adaptive test (CAT)] [Doctoral Dissertation, Ankara University]. https://dspace.ankara.edu.tr/xmlui/bitstream/handle/20.500.12575/37233/eren_can_aybek.pdf?sequence=1&isAllowed=y
3. Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algortihm. Pschometrika, 46(4), 443-459.
4. Bulut, O., & Sünbül, Ö. (2017). Monte carlo simulation studies in item response theory with the R programming language. Journal of Measurement and Evaluation in Education and Psychology, 8(3), 266-287. https://doi.org/10.21031/epod.305821
5. Boyd, A.M., Dodd, B.G., & Choi, S.W. (2010). Polytomous models in computerized adaptive testing. In M. L. Nering & R. Ostini (Eds.), Handbook of polytomous item response theory models (pp. 229–255). Routledge.