Affiliation:
1. University of Twente, Enschede, THE NETHERLANDS
Abstract
ABSTRACT
Purpose
Peak tibial acceleration (PTA) is defined as the peak acceleration occurring shortly after initial contact, often used as an indirect measure of tibial load. As the tibia is a rotating segment around the ankle, angular velocity and angular acceleration should be included in PTA. This study aimed to quantify three-dimensional tibial acceleration components over two different sensor locations and three running speeds, to get a better understanding of the influence of centripetal and tangential accelerations on PTA typically measured in running. Furthermore, it explores tibial impulse as an alternative surrogate measure for tibial load.
Methods
Fifteen participants ran 90 s on a treadmill at 2.8, 3.3, and 3.9 m·s−1, with inertial measurement units (IMUs) located distally and proximally on the tibia.
Results
Without the inclusion of rotational accelerations and gravity, no significant difference was found between axial PTA between both IMU locations, whereas in the tangential sagittal plane axis, there was a significant difference. Inclusion of rotational accelerations and gravity resulted in similar PTA estimates at the ankle for both IMU locations and caused a significant difference between PTA based on the distal IMU and PTA at the ankle. The impulse showed more consistent results between the proximal and distal IMU locations compared with axial PTA.
Conclusions
Rotational acceleration of the tibia during stance differently impacted PTA measured proximally and distally at the tibia, indicating that rotational acceleration and gravity should be included in PTA estimates. Furthermore, peak acceleration values (such as PTA) are not always reliable when using IMUs because of inconsistent PTA proximally compared with distally on an individual level. Instead, impulse seems to be a more consistent surrogate measure for the tibial load.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献