The Lower Limbs of Sprinters Have Larger Relative Mass But Not Larger Normalized Moment of Inertia than Controls

Author:

SADO NATSUKI,ICHINOSE HOSHIZORA1,KAWAKAMI YASUO2

Affiliation:

1. Graduate School of Sport Sciences, Waseda University, Tokorozawa, JAPAN

2. Faculty of Sport Sciences, Waseda University, Tokorozawa, JAPAN

Abstract

ABSTRACT Purpose Sprinters exhibit inhomogeneous muscularity corresponding to musculoskeletal demand for sprinting execution. An inhomogeneous morphology would affect the mass distribution, which in turn may affect the mechanical difficulty in moving from an inertia perspective; however, the morphological characteristics of sprinters from the inertia perspective have not been examined. Here we show no corresponding differences in the normalized mass and normalized moment of inertia between the sprinters and untrained nonsprinters. Methods We analyzed fat- and water-separated magnetic resonance images from the lower limbs of 11 male sprinters (100 m best time of 10.44–10.83 s) and 12 untrained nonsprinters. We calculated the inertial properties by identifying the tissue of each voxel and combining the literature values for each tissue density. Results The lower-limb relative mass was significantly larger in sprinters (18.7% ± 0.7% body mass) than in nonsprinters (17.6% ± 0.6% body mass), whereas the normalized moment of inertia of the lower limb around the hip in the anatomical position was not significantly different (0.044 ± 0.002 vs 0.042 ± 0.002 [a. u.]). The thigh relative mass in sprinters (12.9% ± 0.4% body mass) was significantly larger than that in nonsprinters (11.9% ± 0.4% body mass), whereas the shank and foot relative masses were not significantly different. Conclusions We revealed that the mechanical difficulty in swinging the lower limb is not relatively larger in sprinters in terms of inertia, even though the lower-limb mass is larger, reflecting their muscularity. We provide practical implications that sprinters can train without paying close attention to the increase in lower-limb mass and moment of inertia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3