Validation of Polar Elixir™ Pulse Oximeter against Arterial Blood Gases during Stepwise Steady-State Inspired Hypoxia

Author:

RUSSELL MONICA K.1,HORTON JOHN F.1,CLERMONT CHRISTIAN A.,DEMARTY JENNIFER M.,TRANSFIGURACION LEO C.1,WOROBETS BREANN R.1,PINEDA MARK E.1,SANTANIEMI NUUTTI2,STERGIOU PRO1,ASMUSSEN MICHAEL J.,DAY TREVOR A.

Affiliation:

1. Canadian Sport Institute Alberta—Sport Product Testing, Calgary, Alberta, CANADA

2. Polar Electro Oy, Kempele, FINLAND

Abstract

ABSTRACT Purpose The purpose of this study was to evaluate the accuracy of peripheral oxygen saturation (SpO2) measurements from Polar Elixir™ pulse oximetry technology compared with arterial oxygen saturation (SaO2) measurements during acute stepwise steady-state inspired hypoxia at rest. A post hoc objective was to determine if SpO2 measurements could be improved by recalibrating the Polar Elixir™ algorithm with SaO2 values from a random subset of participants. Methods The International Organization for Standardization (ISO) protocol (ISO 80601-2-61:2017) for evaluating the SpO2 accuracy of pulse oximeter equipment was followed whereby five plateaus of SaO2 between 70% and 100% were achieved using stepwise reductions in inspired O2 during supine rest. Blood samples drawn through a radial arterial catheter from 25 participants were first used to compare SaO2 with SpO2 measurements from Polar Elixir™. Then the Polar Elixir™ algorithm was recalibrated using SaO2 data from 13 random participants, and SpO2 estimates were recalculated for the other 12 participants. For SaO2 values between 70% and 100%, root mean square error, intraclass correlation coefficients (ICC), Pearson correlations, and Bland–Altman plots were used to assess the accuracy, agreement, and strength of relationship between SaO2 values and SpO2 values from Polar Elixir™. Results The initial root mean square error for Polar Elixir™ was 4.13%. After recalibrating the algorithm, the RMSE was improved to 2.67%. The ICC revealed excellent levels of agreement between SaO2 and Polar Elixir™ SpO2 values both before (ICC(1,3) = 0.837, df = 574, P < 0.001) and after (ICC(1,3) = 0.942, df = 287, P < 0.001) recalibration. Conclusions Relative to ISO standards, Polar Elixir™ yielded accurate SpO2 measurements during stepwise inspired hypoxia at rest when compared with SaO2 values, which were improved by recalibrating the algorithm using a subset of the SaO2 data.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3