Abstract
El campo de los biomateriales y sus aplicaciones contribuyen significativamente a la salud y calidad de vida de las personas. Aunque existen varios grupos de biomateriales como cerámicos, polímeros, metales y todos en un determinado porcentaje se utilizan para diferentes procedimientos con objetivos específicos, este artículo de revisión se centra en los metales y sus aleaciones, la resistencia de estos a la corrosión en un entorno biológico y la protección contra el estrés fisiológico. Para esta revisión se seleccionaron artículos que permiten describir dichos aspectos de las aleaciones metálicas utilizadas en aplicaciones ortopédicas partiendo de una detallada búsqueda electrónica, a partir de ello, se concluye que la resistencia a la corrosión y el estrés fisiológico son dos aspectos tan neurálgicos que muchas de las investigaciones realizadas tienen como objetivo mejorarlos garantizando el éxito de la osteosíntesis y la recuperación satisfactoria del paciente.
The field of biomaterials and their applications contribute significantly to the health and quality of life of people. Although there are several groups of biomaterials such as ceramics, polymers, metals and all of them in a certain percentage are used for different procedures with specific objectives, this review article focuses on metals and their alloys, their resistance to corrosion in a biological environment and protection against physiological stress. For this review, articles were selected to describe these aspects of metal alloys used in orthopedic applications based on a detailed electronic search. From this, it is concluded that resistance to corrosion and physiological stress are two aspects so crucial that many of the researches carried out aim to improve them to ensure the success of osteosynthesis and the satisfactory recovery of the patient.
Publisher
Politecnico Colombiano Jaime Isaza Cadavid
Reference104 articles.
1. L. Ghasemi-Mobarakeh, D. Kolahreez, S. Ramakrishna, and D. Williams, "Key terminology in biomaterials and biocompatibility," Current Opinion in Biomedical Engineering, vol. 10, pp. 45-50, 2019, doi: 10.1016/j.cobme.2019.02.004.
2. M. Saini, "Implant biomaterials: A comprehensive review," World Journal of Clinical Cases, vol. 3, no. 1, 2015, doi: 10.12998/wjcc.v3.i1.52.
3. J. Black and G. Hastings, "Handbook of biomaterial properties," 2013, Accessed: Jul. 18, 2021. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=EWPlBwAAQBAJ&oi=fnd&pg=PR13&ots=KmbPU9iVa6&sig=OaO6u1NxOxPuXYA2QHVTiorLvLA
4. Q. Chen and G. A. Thouas, "Metallic implant biomaterials," Materials Science and Engineering R: Reports, vol. 87, pp. 1-57, 2015, doi: 10.1016/j.mser.2014.10.001.
5. "Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules delivery - ScienceDirect." https://www-sciencedirect-com.itm.elogim.com:2443/science/article/pii/S0264127521003932?via%3Dihub#b0030 (accessed Jul. 09, 2021).