Structural and optoelectronic properties of CsSnBr3 metal halide perovskite as promising materials toward novel-generation optoelectronics

Author:

Saad M. M., ,Yousif S. E. A.,

Abstract

In this study, first-principles density functional theory (DFT) calculations of the structural and optoelectronic properties of Sn-based inorganic metal halide perovskite CsSnBr3 are carried out and discussed in details. The Wu-Cohen (WC)-Generalized Gradient Approximation (GGA) based on the full-potential linearized augmented plane-wave (FPLAPW) method is used to optimize the geometry structure of unit cell and then find the accurate optoelectronic properties of CsSnBr3. Analysis of structural optimization results revealed that the lattice parameters (𝑎0 = 5.776 Å) and unit cell volume of CsSnBr3 are exactly consistent with the experiments reports. Based on the results of band structures and density of states, CsSnBr3 is found to be nonmagnetic semiconductor with suitable direct band gap of (Eg = 0.610 eV) along the R symmetry point. In addition, the calculations of optical properties of CsSnBr3, such as the real 𝜀1 (𝜔) and imaginary 𝜀2 (𝜔) parts of the dielectric function, 𝜀(𝜔), absorption coefficient 𝛼(𝜔), reflectivity 𝑅(𝜔) and refractive index 𝑛(𝜔), have been performed in the photonic energy range of (0.0 – 15.0 eV). Finally, the results attained in the present study, which include the stable crystal structure and the high accurate optoelectronic properties such as appropriate direct band gap and high absorption of visible radiation, confirm the possible utilization of CsSnBr3 materials in novel optoelectronics applications as photovoltaic solar cells, photosensors, photodetectors, photodiodes and other related optoelectronics devices

Publisher

Virtual Company of Physics

Subject

General Physics and Astronomy,General Chemistry,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3