A comprehensive study on Ni-Doped cobalt ferrites for optical response and anti-bacterial activity

Author:

Ullah F.,Ahmad I.,Zaib S.,Abrar M.,Khalil M.,Ebdah M. A.,Ramay S. M.,Saleem M.

Abstract

In the current study, Ni doped CoFe2O4 nanoparticles were fabricated using well-known hydrothermal method. The structural, morphological, optical, and antibacterial activity were analyzed through the latest analytical techniques. The Fd-cubic spinel crystal structure was observed with variations in crystallite sizes and lattice parameters of synthesized samples. The growth of spherical and uniform nanoparticles with the presence of expected elements are observed from field emission scanning electron microscopy and energy dispersive x-rays analysis, respectively. A broad absorption band was shown in UV-visible absorption spectroscopy in the wavelength range of 200-320 nm. A significant increase in the energy band gap was observed from 2.98 eV to 3.56 eV as the concentration of dopant increased from 2% to 6%. The antibacterial activities of the samples were investigated against Staph aureus, Pseudomonas aeruginosa and E. Coli through the well-known Agar well diffusion method. The pure and Ni-doped CoFe2O4 exhibits a maximum zone of inhibition (3-25 mm), proposing that these materials are efficient against bacterial resistance. Further, the enhancement in value of the inhibition zone by substitution of Ni at cobalt sites recommended that it is a potential candidate for biomedical applications and can be highly effective against the high resistance of different bacteria.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

Reference68 articles.

1. [1] K. Pubby, S.S. Meena, S.M. Yusuf, S. Bindra Narang, Journal of Magnetism and Magnetic

2. Materials. 466 (2018) 430-445; https://doi.org/10.1016/j.jmmm.2018.07.038

3. [2] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122 (2000) 6263-6267;

4. https://doi.org/10.1021/ja000784g

5. [3] M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3