Photoconductivity of functionalized carbon nanotubes

Author:

Abaszade R. G., ,Mammadov A. G.,Khanmamedova E. A.,Aliyev F. G.,Kotsyubynsky V. O.,Gür E.,Soltabayev B. D.,Margitich T.O.,Stetsenko M. O.,Singh A.,Arya S., , , , , , , , , ,

Abstract

Investigation of carbon nanotubes is a modern trend due to their combination of unique physical, chemical, electrical, and optical properties. Carboxyl-functionalized carbon nanotubes (fCNTs) for investigation of photoelectrical properties were synthesized. The photo-sensitivity spectra of a carboxyl-functionalized CNT sample for voltage range from 1 to 9 V, and for the spectral range from 400 to 900 nm were investigated. The voltage equal to 1 V generated lower photosensitivity in the broadband wavelength range for visible to near-infrared. The most efficient photocurrents of fCNTs were received for a voltage of 5 V in the wavelength range λp~400-800 nm and for voltage U=3V in the broadband spectral range λp~400-900 nm. The experimental data analysis helped to determine the widest photosensitivity range, as well as the highest sensitivity value. As result, the voltage U=5V was obtained. Here, the most significant photocurrent peak with Ip~2.67 μA for wavelength λ~720 nm was observed. A comparison between the photosensitivity spectra of fCNTs and pure CNTs shows that the photosensitivity of fCNTs has increased significantly. Thus, the maximum photosensitivity for fCNTs is Ip ~ 2.67 μA, and for pure CNTs, it equals Ip ~ 0.185 μA. A 14-fold enhancement of photosensitivity for fCNT has been registered. The mathematical analysis of spectral dependencies of generated photocurrents under different applied voltages can be described using fourth-order polynomials. The I-V characteristics for wavelengths 760 nm and 780 nm have the same trend with the shift of photocurrent maximum to the lower parameters of voltage. The carboxyl-functionalized nanotubes can be effectively used as light detectors and in optoelectronic applications.

Publisher

Virtual Company of Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3